,^r"$
Name
Review 6.02 - Distances, Midpoints, and Angles
lJy = lge
2.
1.
o
5Oo
50
ex-qai
Y--
8o
15
X= 30
9x+3G=90
x=6
a; o
4x+l= ! o
65
X= lb
=
lOy
= qo
Y=
1-
Find the coordinates of the midpoint of each segment.
1. JUwith endpoints f(5, -1) 2.
and
E\ I ^ U(1 ' r)
-3)
t5,
VWwith endpoinls V(-2, -G) and W(x + 2, y +
(r,F)
3)
E I
.9
3. Yjs the rnidpoint of TZ. X has cqordjnates
C
Y has coordinates
&
(2, 4), and
(-1, 1). Find the coordinates of Z.
E
o 6
C
7 ,9
E
o d
E
Use the figure lor Ex-ercises 4-7.
;r. .m 5. Find fr. ffi
4. Find
-l li-r-
J
J
6. Find
co
&
#
z (- 1,
li
o
u
_;?,1 -2)
cA. '+'{T
3y*ll t t'fy t9y-1t lo3 +'ly=5q0 l5y .t lbf = 5tD
7- What is the measure of LGCD? B
y=11 L ,.....
.
GCD
+ 7t1+ 9O t J3 = 3,bO
. . . "'' ll.* . . . . . . . . . . . . . . . :. .?.:.?. .: ..11:. *''""J'4"r"'rtt""'r"""t"" : .!,t}.;.[i 2-5 Practice
Geometrychapter,
]
r
.
Lesson
EI
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson
24
@
GEOMETRY
Fr*'bL:at 9et Use
your knowledge of triangle congruence criteria to write proofs for each of the following problems.
7.
Given:
Circles with centers
Prove:
LCAB = LDAE
Ac= Ao 6c=&D
,f
Radut
arrle.
RQdtqs oN crcle Re .flexl ue- g.operty
fia= aA a AcE
4 and B intersect at C and O
:
A
LCABZ
ADB sss
2. Given: Ll = LM,JA: Prove: KR *ffi
MB,IK
: KL:
LM
tOAb
A
4U= ail\ dlven 5A=MB 0l Vet'\ JK= kL= tl atven
fit
KL = ,(L+
U
N
LK=tL CPCTC fR: LR lsos. a
qll,thon g.o7e'ty o$ 3 sTments t
SL =nK sqbsfitqfion g{K TA A ASL 643
3. Gven: mzw =mZxandml! =y4 Prove: (Ll LABE=tACE (21 AB : AC
4l^,=ax
fll ven L Aeg+ L,l = t80 Irn(qr ?q,r LAECILe-= l8o lrnecr farr LAEts + LY 1 L AEL+ LZ *rq"st o f LY = L|L .grven I EUREKA *(*r* CongruKe Criteria for Triangles-ASA E i wort
ls
f.6
and
I
Ewela Ma$ *adlkeGed b{ 6€O+r1-TE-r,3.O{r7.201S
d6isdt6n
Ihi5 tlls de.ivsd
fhsorer'\
(means measure of angle w measure of angle x)
fltven
LlzLz
HATIf
cPcTC-
6Et
Minds.
ts2t[5 G..dMind5-.uEkafft r.o.B
SSS
LA*3aAec- ""btr".t^
fr ; ili r?
A/4BE
rc.Fltrtve
3sAcE Ag
Fo = ftc-
c-Pc-TC-
engragenv
s.135
[ @r#*:*xiffi;