Name._ _ _ _ _ _ _ _ _ _ _ __
HW_ __
Ch 8 Polynomial Review E
What is the degree of each polynomial?
7 a 4 - 2a + 3a 2 Sab + 3 -12 Sa 3 b 2 - 2ab + 3 - a 2 b
1.
2. 3. 4.
Name each polynomial by it's degree
5.
6
6.
8y
7.
7a 3 7a 2
8.
+7 +a -
4
Name each polynomial by the number of terms it has
9. 10. 11.
7a 4 Sa + 12 6a 3 + a - 2
12.
Which of the following is NOT a polynomial?
a}
3
__ C 3.5
5
b2
+. 6c
b}
Sa- 3 b
7
-
+ 3x -
2
(a 2
+ 4a -
10)
c}
x
Perform the indicated operation
2x + 6x 3
13.
(x 2
14.
(11x 3
15.
(Sa - 3)
-
-
-
2x + 4x 2
8)
+ (-9x + 6x 2 -7x 3 )
-
8) - (6x - 7x 3
+ (3a + 5) -
+ Sx 2 )
(12a - 3 + 4a 2 )
-
d}
3xy - 3y
Find. the product
26.
-2c 4 (5c 6 - 2c 3 + 7) . (a + 3)(a + 10) (a - 4)(a - 5) (a - 9)(a - 9) (3a - 4)(3a + 4) (3a + 5)(2a - 1) (4a + 1)(2a - 3) (7a - 6)(4a - 9) (3y + 2)(y2 - 2y - 5) (c + 4)2 (a - 5)(a + 2)(a - 3)
27.
Write an expression for the perimeter
16. 17. 18. 19. 20. 21. 22. 23. 24.
25.
r'-----H-~ r
28.
----'I~
_/l_ _
k,X
,3x-1 x - '1
+s ~~
Write an expression for the area
:,X + '1
X+'1
1.. .- -1_I
Factor each expression
29. x 2 - 13x + 24
)<-7 #
'tcA~
Yx
\
...
I
+ x 2
34.
-49
35.
x 2 - 8x
+7
30.
16a 4
31.
3x 2 + 6x - 24
36.
10a 2 + 12
32.
6x 2 + 17x + 10
37.
3a 3
33.
a 2 -1
-
81'
+ 3a + 2a 2 + 2
f 38. 8x 3
-
20x 2 - 2x
+5
.2) d-e~J
3') ct t'
\1) 0\.2..t-'OIA..+~CA+30
0
I~)
5
ot-etyUL
->l r;...)..- '1 ~ +
s~ -'1 «.. T to
2-0
0
\"I} C,:':.. '1 A. - '1 "- "'" ~ I -{~~
5) Con 5 \-Cvn 'r
20)
") LI ~.e (;...r
CIa..2.,.
\),,- _
~ l\e,
\2",
qa,..'-- Ih~.
2..,) (PCt~-.3a...+JOA..-5
1) .f?')
Q. u.~ 'A..-+ \c..
9)
vYlQ () 0 YY\\ c......(
\0')
\0 ~ I")OvY\" ~
C\A\o \C
, \') t
0 ....2-'
1;..) <60-~-\A&'- -t .:2.."-..-3
orZ3) ,2.
+ 5'1 -?
~
/(",1 #10 rt"\' I
a. b, C
. "\..t.) \~)
.3
. -x+.1 x .2..-\\'x (
bX
+ 14)
~
~:;'xJ
8
-
x"- - 2.>< -!J
(,XZ-
-1x
\ 'B )(.-><:-8)(3 ;)...
l
1\ x
-
3
St:\. ?>&\.
- If""' .
~
4x
.2..
t- 1 »3 -s:x .2.
is) -
\).",
2~) ~~c..n)(6c-3J
- 2k. -8
-('x
-3
s
"5
CQ.~3 . . -)0(Cc"3)
a..3>- 3 ~J...-,,--<" zc:::;::
c...."":1
Jo C\..
-::::=:3u"- t- q ~
-(02-- -~ "'" s
-\- SO
..,
J.t1) (x -s)Cx-~ ~3) (ytf-r9) (V4L~ (1ft t l\)9Qvr~)(it1\-~ '3 x<- +- Vx.-.:t y
=., \)
f
=- 3 X-I
+ 2)<;-t- 5 T If''.2.- L. x -\- go
.3( x'k +
-ilx- '1
r=- Lf xA.- )( + \~ 'I ~s J$~
~)
S)
)(x -t-;2..)
)(x
(t?x
A;;
AX -
~AA.J .
IT ::('X + ~){3 x + '1l 3;')
~
a...:(., - \ CtA- + \) C'"" -
A--== s ~ A -:::
..
ex -rr)2-
('Y--t"J
~x- 5)(4~:L- \)
ex--D
-~
(x-iJ')(><
2$c
A
b\..
=- -t:Cr+iXLJ><) i[l{ x:t\- i]
~
'1)l~ (2. ~- 5)- \(.2.)<-?)
35) x - C?x +? A-~ ~
?>~) 1'1. ~iol-J.. x +5 ~
e,~)
2
~
9
3"')
CR-- 'J..~ s)b.x t )')o.x- t
-0
\OCL.1.t-\~ ~
.t (?~~ \tI ~cw
'->1t h~v.(3 {..
SIALf
t-~M~